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ABSTRACT

The tensile failure behavior in adhesive-bonded composite single-lap joints with different overlap lengths is
investigated through experiments and various three-dimensional (3D) explicit finite element methods (FEMs).
Different failure modes are observed in different overlap lengths. Three parameterized finite element models are
developed to discuss the accuracy and applicability of the 3D explicit FEMs based on different modeling stra-
tegies and improved failure criteria. All criteria are programmed with the explicit user subroutines employing
element deletion to avoid convergence problems caused by element distortion. The load-displacement curves
predicted by these models are consistent with the experimental results, while the prediction of failure mor-
phology depends on model types. The models neglecting interface elements cannot simulate the delamination
when cohesive zone models (CZMs) are adopted to predict adhesive failure. The influence of CZMs on dela-
mination is analyzed comprehensively to address this problem. Analysis of stress distribution in an overlap of a
length of 10 mm indicates that the peak stress of the adhesive layer occurs on the overlap ends along the axial

direction, coinciding with implicit results.

1. Introduction

Compared with the traditional mechanical joints, adhesive-bonded
joints have the advantages such as lighter weight and smoother aero-
dynamic shape. Thus, the adhesive-bonded composite single-lap joint,
as one of the low-cost and simple fundamental adhesive-bonded joints,
has been widely used in the design of advanced composite structures.

Since the 1930s, research on adhesive-bonded composite joints has
attracted increasing attention, and some theoretical investigations have
been conducted [1-6]. Subsequently, many studies [7-13,19-21] have
been carried out by FEMs to predict the failure load, stress distribution
and damage propagation of adhesive-bonded joints. Harris et al. [7]
proposed a non-linear finite element technique based on the plane
strain assumption to predict the failure load of single-lap joints. Pickett
et al. [8] used two analytical methods to determine distribution of
elastic-plastic adhesive stress in bonded joints. The effect of various
parameters on the performance of adhesive-bonded joints is studied in
Ref. [9] by Gunnion and Herszberg. They found that an added over-
laminate could reduce the peak stress in the adhesive. To simulate
failure behaviors better, special elements and failure criteria were also
developed by several scholars. Andruet et al. [10] developed special
adhesive elements for load-displacement analyses, and represented the

adherend with shell elements. Gongalves et al. [11] established a new
model for finite element analysis of single-lap joints using developed
interface elements. Wahab et al. [12] proposed a damage criterion
based on thermodynamics principles, and Anyfantis et al. [13] pro-
posed a new T-S criterion to simulate the mixed-mode failure of the
ductile adhesive layer. In recent years, CZMs have been used to model
thin adhesive layers or adherend-adhesive interfaces in bonded joints.
Blackman et al. [14] applied CZMs to bonded composite configurations
and investigated the physical significance of the maximum stress. Li
etal. [15,16] used CZMs to model the mixed-mode fracture of adhesive-
bonded joints. In their subsequent works, they showed that the CZMs
can predict both strength and failure mechanism of joints. Moura et al.
[17] used cohesive and continuum mixed-mode damage models to si-
mulate damage propagation of bonded joints. Li et al. [18] and Luo
et al. [19] performed finite element analyses to investigate the tensile
failure behavior of adhesive-bonded joints with implicit methods. They
used the same method to simulate the delamination with cohesive
elements, and the laminates with shell elements.

Most scholars use implicit methods to analyze bonded joints. Severe
convergence problems caused by divergent results of iterative compu-
tations and ill-conditioned solutions for simultaneous equations might
easily occur in implicit FEMs, resulting from complicated distribution of
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Table 1
Information of the specimens.

Group Overall size Adherend Overlap Number of  Adherend stacking
(mm) thickness length the sequences
(mm) L(mm) specimens
Upper Lower

A 170 x 25 0.96 2.5 6 [45/0/ [—45/
B 170 x 25 0.96 5.0 6 —45/ 0/45/
C 170 x 25 0.96 10.0 6 90]s 90]s

Table 2

Properties of T300/QY8911.
Elastic property Value Strength property Value
E;; (GPa) 135 Xr (MPa) 1548
E,, (GPa) 8.8 Xc (MPa) 1226
Es3 (GPa) 8.8 Yr (MPa) 55.5
G, (GPa) 4.47 Yo (MPa) 218
Gi3 (GPa) 4.47 S12 (MPa) 89.9
Gos (GPa) 4.00 S13 (MPa) 89.9
V12 0.33 S»3 (MPa) 51.2
V13 0.33 Density p (kg/m%) 1600
V23 0.35

Table 3

Properties of J116B.
Property Shear strength Peel strength (90°) Density p

(MPa) (kN/m) (kg/m®)

Value 24.5 7.5 1000

stress and failure modes around adhesive regions. The convergence
problems can be solved better by explicit FEMs, which can be used to
perform quasi-static analysis [20]. A few studies have been conducted
by using explicit solvers to model adhesive-bonded joints. For example,
Neumayer et al. [21] presented an explicit cohesive element to enable
the simulation of delamination in bonded joints on a full-scale struc-
tural level. However, these explicit methods are relatively in-
comprehensive and are mostly based on 2D elements. The efficiency
and reliability of different types of explicit FEMs remained unknown in

(b)

Fig. 1. Geometry of test specimens (unit: mm): (a) Diagram of specimens; (b) Photograph of specimens.
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terms of damage of 3D elements, and possible convergence problems
caused by 3D element distortions [22] were generally not considered in
these methods either. Thus, further studies are needed to be in-
vestigated.

The objective of this paper is to present a comprehensive study of
the tensile failure behavior in adhesive-bonded composite single-lap -
joints. Single-lap joints with different overlap lengths are tested under a
uniaxial tension load, and three types of parameterized 3D explicit
models are established with user subroutines. Element deletion is
adopted in user subroutines to overcome the convergence problems
caused by element distortion. By comparing numerical results with
experimental data, efficiency and accuracy of these models are com-
prehensively discussed in terms of load-displacement curves and failure
morphology. The applicability of different explicit FEMs is also dis-
cussed based on different failure modes. Besides, the effect of cohesive
elements on delamination is analyzed, and stress distribution of explicit
models is compared with the implicit results.

2. Experiment
2.1. Specimens and experimental test methods

Specimens were made up of adherends and adhesive, and adherends
were constituted by fiber-reinforced composite laminates consisting of
fibers and polymer matrix. Fig. 1 and Table 1 display the geometry of
the specimens. These specimens were divided into three groups, with
each group containing six pieces. The overall sizes of all specimens
were the same, with the length being 170 mm, the width being 25 mm,
and the average thickness being 1.94 mm. But each group has different
overlap length L (Group A: L = 2.5mm, Group B: L = 5.0 mm, and
Group C: L = 10.0 mm). The adherend consisted of eight layers, and the
average thickness of the adhesive layer was 0.02 mm. The material of
the adherend is T300/QY8911 (carbon fiber/BMI) with quasi-isotropic
lay-ups ([45/0/ —45/90]s or [ —45/0/45/90]s), and the material of the
adhesive is J116B. The properties of the materials are presented in
Tables 2 and 3. Besides, glass fiber-reinforced plates were appended on
both ends of the joints to avoid damage of the clamping ends during
loading.

The same axial tensile test of each specimen was performed to ob-
tain reliable experimental results. The referenced test criteria are the
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Fig. 2. Test set-up of specimens: (a) Diagram of specimens under the axial tension load; (b) Test system.

standard test methods ASTM D3039/3039 M, applying to polymer
matrix composites. All tests were performed under quasi-static axial
tension on an Instron 8801 hydraulic testing machine at room tem-
perature 25 °C and were conducted in displacement loading control at a
rate of 0.5 mm/min. The set-up for the tensile test is shown in Fig. 2.

2.2. Experimental results

Fig. 3 shows the failure morphology of adhesive-bonded composite
single-lap joints. It can be observed that the failure modes of the three
groups are different, and can be divided into three types: Mode A
(adhesive failure), Mode B (mixed failure) and Mode C (delamination,
fiber pull-out and fiber fracture). Mode B is a mixture of Mode A and
Mode C. The statistical results of failure modes of each group are shown
in Table 4.

The mainly failure morphology of Group A is Mode A (Fig. 3(a)),
and the damage in the adhesive region (Region A-1 and Region A-2) is
smooth, accompanied by no obvious damage of the adherend. But for
Group C (Fig. 3(c)), it can be seen that the composite layer adjacent to
the adhesive is peeled off, but the adhesive remains intact and reliable.
Delamination extends between the first two layers of the lower plate
(Region C-1 and Region C-2). Meanwhile, a small scale of delamination
can be observed in the upper plate (Region C-3). A lot of fibers are
pulled out along the fiber direction of the superficial composite layer,
and some fibers are torn and broken at the edge of the overlap area
(Region C-3 and Region C-4). For Group B (Fig. 3(b)), the failure Mode
B is observed, which is a combination of adhesive failure and delami-
nation. The damage is divided into two sections along the overlap area
(e. g. Region B-1 and Region B-3), and some fibers are also pulled out.
Besides, the failure load as well as displacement of the longitudinal
failure gradually increase from Group A to Group C as the overlap
length increases from 2.5 mm to 10.0 mm.

3. Explicit analysis
3.1. Failure criteria and damage evolution laws
Three types of 3D explicit finite element models (Model I, Model II

and Model III) are established by different modeling strategies and
failure criteria in this study. A detailed comparison of failure criteria in
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the three models is shown in Table 5.
In Model I, laminates follow improved 3D Hashin failure criteria
with an exponential progressive damage evolution law proposed by
Linde et al. [23]. As is known, the general 3D Hashin failure criteria
[24,25] are stress-based. Some problems may occur when the stress-
based failure criteria are applied to numerical calculations: the internal
stress of the material tends to mutate along with the composite damage,
and the stress mutation may lead to instability of numerical calculations
especially with interface elements [26]. To overcome the problem, this
paper refers to the research of Wang et al. [27] and expresses the im-
proved 3D Hashin failure criteria with strains. Besides, this paper de-
velops the general 3D Hashin failure criteria by introducing a first-order
item of g + & in the matrix tensile failure formula, which can avoid a
discontinuity of the failure enveloping surface under the condition of
complex stress and predict the failure modes more accurately. The
improved failure criteria are listed in Table 6. Fy;, Fy, Fy,, and Fy are the
damage initiation coefficients of different failure types. The initial da-
mage of materials occurs when the corresponding coefficients equal 1.
&h, e, €f, f, and szf @i, j =1, 2, 3) are failure strains, and can be cal-
culated from failure strengths respectively as follows:
Elft =X,/Cn, Elf;,' = X./Cu, 52{ =Y/Co, Ezj; =Y,/Co ¥

i

=8;/Gy (,j=1,2,3) @

where X;, X, Y;, ¥; and S;(i, j = 1, 2, 3) are the corresponding failure
strengths. Once the above criterion is satisfied, the corresponding ex-
ponential progressive damage evolution law evolves by calculating the
damage variable as follows:

Fiber tension failure g > 0:

dp = 1—(1/F)exp(=Xef, L (Fp—1)/Gp) )
Fiber compression failureg; > 0:

die = 1—(1/Fp)exp(—X. &, L (F—1)/ Gy) 3)
Matrix tension cracking ¢, + & > 0:

At = 1=(1/Fp)exp(=Y;e4; L (Byy—1)/ Gine) “
Matrix compression cracking & + & < 0:

e = 1~(1/Epe)exp(—Yee4, L (Fyue—1)/ Gonc) ©)
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(a)

Fig. 3. Failure morphology of adhesive-bonded composite single-lap joints with
different overlap lengths: (a) Mode A (L = 2.5 mm); (b) Mode B (L = 5.0 mm);
(¢) Mode C (L = 10.0 mm).

Table 4
Detailed failure modes with different test parameters.
Group Overlap Number Failure Morphology Average Average
length of the mode failure longitudinal
L(mm) specimens load failure
(kN) displacement
(mm)
A 2.5 6 Mode A Fig. 3(a) 1.85 0.25
B 5.0 6 Mode B Fig. 3(b) 3.61 0.45
C 10.0 6 Mode C  Fig. 3(c) 6.08 0.75

where dj, dj., dp and dy, are the damage variables of different failure
types; G, Gr, G and Gy, are the corresponding fracture energy; L. is
the characteristic length associated with the material point. The frac-
ture energy and the characteristic length can effectively overcome the
mesh-dependence problems in FEMs [28]. Once the material is
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damaged, its stiffness matrix is weakened by the damage variables, and
the constitutive relationship is updated as [29]

(1-dp)Cny (A—dp)A (1-df)Cy3

—dp)Cra

(1=dn)Cr2 (1=d)Cys 0

o= Cs €
(1-dp)Q1
_dm)c44
sym Css
Ces 6)

Where C;(i, j = 1, 2, 3) are the stiffness coefficients of the undamaged
material; d; and d,, are the synthetical damage variables of fibers and
matrix respectively, and are defined as

df _ {dﬁ, g > 0.

dfc; g < 0’

_ dpe, & +8 >0
"o dpe, & +8 <0

@]

All the above mentioned criteria are implemented in a user
subroutine VUMAT [30].

Obviously, delamination is not considered in the 3D Hashin failure
criteria. Therefore, bilinear CZMs are used to simulate delamination
and adhesive failure in Model I. The relationship between the stress and
displacement of the upper and lower surfaces defines the constitutive
model of CZMs (Fig. 4), and is described as a bilinear Traction-Se-
paration Law (Fig. 5) [31]. The nominal traction stress consists of three
components in 3D problems: t,, t; and ¢;, which represent the normal (t,)
and the two shear tractions (t; and t;) respectively. The corresponding
separations are denoted by §,, §; and &. The nominal strains can be
defined as

e =0,/To, &=20/T, &=06/T ®

where T is the initial thickness of the element. The initial linear elastic
behavior is

9

where K,,,, Ki; and K, represent the ratio between different stiffness
coefficients and the nominal thickness respectively. The initial damage
is evaluated by the following quadratic nominal stress criterion [32]
expressed as

2

) -1

(-]
£ £ t

where < > is the Macaulay bracket, emphasizing that a purely com-
pressive stress state does not initiate damage. Once the criterion is met,
the material stiffness initiates a degradation process, as expressed by
the following constitutive model:

n Knn &n
= (1 -D ) K &
t Ky | \&

where D (0 = D < 1) is the damage variable, evolving from initial da-
mage (equals 0) to ultimate failure (approaches 1). The ultimate failure
displacement of cohesive elements is defined by the fracture energy G¢,
which is corresponding to the area under the traction-separation curve
as shown in Fig. 5. The critical fracture energy can be calculated by the
Benzeggagh-Kenane fracture criterion [33] expressed as

)n
where 7 is a material parameter, and is taken as 1.45 in this paper [34].
In Model II, Hashin-type failure criteria [35] are chosen to predict

(10

o~

t=

~

1D

G¢ + GF

G€ = G + (G-GH| ——=——"—
n+ (G ")Gf+GSC+G,C

12



J. Ye et al.

Table 5
Detailed failure criteria of models.

Model  Failure criteria
Adherend Adhesive Interface of the
adherend
I Improved 3D Hashin/ CZMs CZMs (zero-
Exponential progressive damage thickness)
evolution
I 3D Hashin-type/ Improved CZMs

anticlimactic damage evolution
3D Hashin-type/ Improved
anticlimactic damage evolution

il Distortion energy

theory

the damage of laminates, because the criteria include prediction of
delamination. A sententious model is then established without inter-
facial cohesive elements. The expressions are shown in Table 7, and the
initial damage criteria include six different failure types. In order to
improve efficiency, an improved anticlimactic damage evolution law is
developed based on the research by Camanho et al. [36] and Tserpes
et al. [37]. In this damage evolution law, elastic constants are updated
by multiplying constant degradation coefficients, which are listed in
Table 7. The elastic constants of matrix tension and compression share
the same degradation coefficients, so these two types of matrix damage
can be unified. In the same way, fiber damage and delamination can be
also unified. Thus, four field variables FV1, FV2, FV3, and FV4 can
represent all types of damage (fiber-matrix shear-out, matrix tension or
compression damage, delamination in tension or compression, and fiber
tension or compression damage). A user subroutine VUSDFLD [30] is
used to control material degradation by changing the field variables
from O to 1. For the adhesive, the CZMs are still used in Model II, the
same as in Model I.

In Model III, the distortion energy theory is adopted to predict the
adhesive failure instead of the CZMs. According to this fundamental
theory, the Von Mises yield criterion is used and the initiation of
yielding is defined as

o = %\/(01—02)2 + (02-03)* + (05—01)* < [o] a3
where 01, 0, and o3 are the principal stress components, and o; is the
yield stress. The Von Mises yield criterion can be programmed easily
in VUSDFLD. Meanwhile, the 3D Hashin-type failure criteria are still
chosen to predict the damage of laminates. Thus, in Model III, just one
user subroutine VUSDFLD is used, in which the failure criteria of the
adherend and the adhesive are programmed together.

3.2. Finite element models

3.2.1. Parametric modeling
A parameterized model of single-lap joints is established through a
one-click program. The program is developed using the Python

Table 6
Improved 3D Hashin failure criteria.
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Fig. 4. Diagram of cohesive elements: (a) 2D elements; (b) 3D elements.

Traction

o (1.1))

50(87.57)

Fig. 5. Bilinear Traction-Separation Law.

5,{ ((5,’{ . 5_3' ) Separation

language, and a human-machine interaction window is developed
based on ABAQUS RSG dialog builder tools [38]. The model para-
meters, such as model sizes and analysis settings, can be conveniently
controlled by inputting parameters in the dialog box. Users can even

Failure type

Initial damage criterion

Fiber tension failure (g > 0)

Fiber compression failure (g < 0)

Matrix tension cracking (g, + & > 0)

Matrix compression cracking (e, + & < 0)

Fe=-%
Ej/C
2
2 _ zzft (e2+¢3)
Fao= |1+ 2 :
2r33 3
2
F2 = (i] 1 (e2+¢3)
mc f f
253 ¢

2
e2+e3 | _ €263
+ T o
733 (r33)

2
+ 5273 - 52;3 +
273 (r43?

2
e

ﬁ)z +
i3

2
(m]
h
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Table 7

3D Hashin-type failure criteria and the improved anticlimactic damage evolution law.

Composite Structures 201 (2018) 261-275

Failure mode

Initial damage criterion

Improved anticlimactic damage evolution law

Fiber tension failure (o7 > 0)

Fiber compression failure (o7 < 0)
Matrix tension cracking (oz > 0)
Matrix compression cracking (o2 < 0)
Fiber-matrix shear-out

Delamination in tension (o3 > 0)

Delamination in compression (o3 < 0)

2 2 2
o1 T12 713
)+ () +(2) =1
Yt) (512) (513)

E{ = 0.07F,

Ej; = 0.2E;, G{, = 0.2G12, G33 = 0.2G3

Gl;=0,v,=0

E3=0,G{3=0,G3=0,7{3=0,v53=0

X, Xe, Y, Yo, Z;, Ze, Sii(i, j = 1, 2, 3) the corresponding failure strengths.
Ey, E,, E;, Gia, Gi3, Gz, V12, V13, V23 the initial elastic properties.
E|, E;, E3, Gi,, G{3, Gs3, V15, V{3, V35 the weakened elastic properties.

make a decision whether to add interface elements or not. As a result,

the research process is simplified.

Table 8

Typical elements of different models.

Model Element
3.2.2. Model details
Based on the abovementioned failure criteria and parametric mod- Adherend Adhesive Interface of the adherend
eling program, detailed explicit analysis models are established (Fig. 6). I C3DSR COH3DS COH3DS
For these models are of the same size, most model settings are the same, il C3D8R COH3DS
and the only difference is in mesh types. The mesh type of each model is 11 C3D8R C3D8R

shown in Table 8 and Fig. 7. The adherend is modeled by eight-node 3D

linear brick elements with reduced integration (C3D8R) in all models, . ) .
and the enhanced stiffness relaxation method is used to prevent hour- M0f1e1 II while C3D8R are applied to the adhesive of Model .III. Mean-
glassing of the reduced integration elements. Eight-node 3D cohesive while, COH3D8 are applied to the interface of the adherend in Model I

elements (COH3D8) are adopted to model the adhesive of Model I and (Fig. 7(a)), and the interface elements are defined as zero-thickness to

Fine mesh region

-

1

-
¥

I
L !

¥ A i i i)

Fig. 6. Explicit analysis models with fine mesh regions.
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Adhesive layer
( COH3DS8 )

Laminate layers
(C3D8R)

The interface of the
¥ adherend (zero-
N, thickness COH3DS )

! (a)

Adhesive layer
( COH3DS8 )

Y
! Laminate layers
X

z (C3D8R)

Adhesive layer
(F3D8R )

}‘ S Laminate layers
z

(C3D8R) (c)

Fig. 7. Mesh types of different models: (a) Model I; (b) Model II; (c) Model III.

simulate delamination. The computing time increases dramatically
when cohesive elements are used [39]. Since delamination occurs be-
tween the first two layers adjacent to the adhesive in experiments, in-
terfacial cohesive elements are only placed between the first two layers
to decrease modeling complexity and computation costs. The overlap
area, including the localized region around it, is discretized with the
fine mesh to improve computation accuracy (Fig. 6). All models are

Composite Structures 201 (2018) 261-275

fixed at one end and subjected to a uniform tensile displacement at the
other end.

3.2.3. Element deletion

Although explicit methods can overcome the convergence problems
resulting from divergent results of iterative computations and ill-con-
ditioned solutions for simultaneous equations, the methods may still
have other convergence problems caused by element distortion.
Element deletion is a practical numerical strategy to overcome this
problem. Thus, an element deletion technique proposed by Hu et al.
[22] is adopted and improved to avoid element distortion of laminates,
considering material failure and large volume changes of elements.
Material failure is determined by damage variables or field variables,
which are calculated by the failure criteria mentioned in the above
sections, and the maximum damage variables representing material
failure are taken as 0.999. Critical volume changes of 3D elements is
defined by a deformation-based maximum strain criterion as follows
[40]:

lgl = emax  (i=1,2,3) a4

where ¢;(i = 1, 2, 3) are the normal strain components and &, is the
maximum strain. The value of ¢, is discussed later in the next section.
At an integration point, once the damage variable has approached 1 or
the strain component has satisfied Eq. (14), the contribution of this
point to the element stiffness matrix is ignored. For the complete de-
letion of elements, two combined deletion criteria can be further con-
sidered [22]: strong or weak combined deletion criterion. If an element
needs to be deleted, the strong combined deletion criterion requires
that all the integration points in the element either fail or satisfy Eq.
(14), whereas the weak one only requires one integration point. The
strong combined deletion criterion is recommended for most cases and
the weak one is more suitable for extremely severe element distortion
and material crushing [22]. Considering that the loading process is
slow, and the local distortion is not severe, strong combined deletion
criterion is employed in this paper.

The deletion criterion can be implemented in user subroutines using
the deletion state variable of the integration point, and the state vari-
able number is specified to control the element deletion flag. Generally,
the deletion state variable can be set to 1 or 0, meaning that the in-
tegration point is active, or that the integration point is ignored, re-
spectively. Once a point has been flagged as ignored, it cannot be re-
activated. Besides, the deletion of cohesive elements can be directly
defined in ABAQUS with the damage index being 0.99.

4. Results and discussion
4.1. Maximum strain of element deletion

Different values of ¢, are investigated to find a suitable one for
element deletion. Taking Model I as an example, the simulation results
of Group C are provided in Fig. 8, with e,,,, equal to 2%, 7%, 12%, 15%,
18%, 20% and 22%. It can be seen that the maximum failure load is
significantly low when ¢y, equals 2%, 7%, 12% and 15%, resulting
from premature deletion of elements. The premature deletion of ele-
ments can be observed at the edge of the overlap area in both sides of
the joint when ep,, equals 2% (Fig. 8(a)), but in only one side of the
joint when e, equals 12% (Fig. 8(b)) because of the increase of &p,y.
However, when ep,, equals 18%, 20% and 22%, hardly are any ele-
ments prematurely deleted (Fig. 8(c)), and the simulation results are
closely consistent, indicating that the value of ¢, for converged results
can be taken as 20%. Similar results can be obtained in other models,
and this value is approximately consistent with the one used in other
studies [22,41].
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Fig. 8. Simulation results of Group C in Model I using different values of ey, . The graphs “A, B, C” represent the element deletion in three typical conditions.

Table 9
Comparisons of the maximum failure load of numerical and average experi-
mental results.

Group Maximum failure load (kN)
Average experimental results Numerical results (Relative error)
Model I Model II Model III
A 1.85 1.77 (4.3%) 1.88 (1.6%) 1.87 (1.0%)
B 3.61 3.52(2.4%) 3.71 (2.8%) 3.73 (3.3%)
C 6.08 5.80 (4.7%) 5.97 (1.8%) 6.22 (2.3%)

4.2. Load-displacement curves

Table 9 and Fig. 9 show the comparison of numerical and experi-
mental results. All numerical curves are consistent with experiments
with different overlap lengths, and the maximum relative error of the
failure load between numerical and average experimental results is less
than 10%. The relative error is reasonable and may be caused by the
following reasons: (i) The specimens contain initial cracks and manu-
facture errors; (ii) The clamping ends contain tiny slippages. Besides,
the maximum failure load of Model I is slightly lower than the test
results, while those of Model II and Model III tend to be slightly higher,
indicating that Model I is relatively conservative. The curves are basi-
cally in the linear ascending segment during the prophase and begin to
decline gradually after reaching the maximum load. Due to the explicit
algorithms, the numerical curves have some fluctuations, but can reach
the maximum load with no convergence problems. Besides, Model I is
nearly twice computationally expensive than the others.

4.3. Failure modes of numerical simulations

Since all the damage occurs near the overlap area, the localized
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regions around the overlap area are taken as viewing zones. In order to
compare numerical and experimental results conveniently, the failure
contours of simulations are arranged in accordance with Fig. 10. The
upper and lower plates are placed relative to each other, and the sur-
faces adjoining the adhesive are upward.

Fig. 11 shows that all models share similar simulation results when
the overlap length is 2.5mm. Because the bearing capacity of the
narrow adhesive layer is weak, the failure mode of these models is the
complete adhesive failure (Fig. 11(a)) with no obvious damage of the
adherend (Fig. 11(b) to (e)), consistent with Mode A.

Fig. 12 shows that the adhesive layer is partly damaged in all
models when the overlap length is 5.0 mm, and the damage range of
Model II is slightly larger (Fig. 12(a)). Nevertheless, only Model I and
Model III have similar delamination in the undamaged area of the ad-
hesive and along the fiber direction of the non-lap zone (Fig. 12(d)),
consistent with Mode B. In Model I, zero-thickness cohesive elements
are damaged, indicating the separation between the first two layers; in
Model III, the field variable of the delamination (FV3) reaches failure
criteria almost in the same area. Matrix damage and slight fiber damage
can be also found in the delamination area of Model I and Model III
(Fig. 12(c) and Fig. 12(e)), coinciding with the fiber pull-out in ex-
periments. Except at some stress concentration positions, no delami-
nation, matrix damage and fiber damage can be observed in Model II,
which is inconsistent with Mode B (Fig. 12(c) to (e)).

Fig. 13 shows that the adhesive is intact in all models, when the
overlap length is 10.0mm. In Model I and Model III, delamination
(Fig. 13(d)) occurs in the overlap area of the lower plates, and extends
outwards along the fiber direction. The matrix damage and fiber da-
mage of Model I and Model III (Fig. 13(c) and (e)) are basically con-
sistent with the fiber pull-out and fiber fracture in Region C-3 and Re-
gion C-4 of Fig. 3, respectively. Moreover, the upper plates of Model I
and Model III also have delamination around a corner, which is con-
sistent with Mode C. However, in Model II, delamination is restricted to
the overlap area, and the matrix damage and fiber damage are
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concentrated at the stress concentration positions (Fig. 13(c) to (e)).

Overall, all models can predict the experimental Mode A, and only
Model I and Model III can predict the experimental Mode B and Mode C.
Model II cannot simulate the experimental results involving delami-
nation. Besides, Model I is more accurate than Model III in terms of
prediction of matrix damage and fiber damage, because of the pro-
gressive damage evolution law. It is noticed that the influence of fiber-
matrix shear-out failure is unapparent, and delamination always occurs
along with fiber pull-out.

4.4. Effect of cohesive elements on delamination

In order to study the effect of zero-thickness cohesive elements on
delamination, the models with the 5.0 mm overlap length are selected.
The path along the through-thickness direction of the lower plate and
near the delamination position (Fig. 14) is picked. The interlaminar
stresses on the path are output. Because the interlaminar shear stress 3
is relatively small, only the interlaminar normal stress o33 and the in-
terlaminar shear stress t;3 are analyzed. Fig. 15 shows the distributions
of 033 and 7,3 near the ultimate failure point of all models. The y-axis
represents stress, and the x-axis represents the sequence ID of the nodes
along the path. The stress distribution of all models is basically con-
sistent from the third layer to the eighth layer. But significant differ-
ences can be observed around the first and second layer, and delami-
nation exactly occurs here. Different from Model II, interlaminar
stresses are changed dramatically between the first and second layer in
Model I, because zero-thickness interfacial cohesive elements are lo-
cated here. This change positively affects the prediction of delamination
and leads to failure of interface elements, even if the overall inter-
laminar stress level is not high. Although Model III has no interface
elements either, the change of adhesive element type results in im-
provement of the stress level in the first two layers, and delamination
consequently occurs.

When the overlap length is 10.0 mm, the interlaminar stresses are
high enough, and delamination of laminates can be observed in all
models. But delamination of Model II is only restricted to the overlap
area. Fig. 16 shows the stress contours and the corresponding strain
contours of the first layer under the condition of ultimate failure in
Model II. Due to the evolution law of anticlimactic damage used in
Model II, the elastic parameters (E3, G13, Ga3, V13 and vy3) of laminates
are suddenly reduced in the delamination area. According to Eq. (15),
the capacity of bearing interlaminar tension, compression and shear has
catastrophic deterioration. The stresses (Ss3, S;3 and S,3) associated
with interlaminar damage dramatically decrease (close to 0), while the
corresponding strains (LE33, LE;3 and LE,3) dramatically increase (close
to 0.2) (Fig. 16), indicating the loss of interlaminar bearing capacity
and the dramatically increased relative displacement of the upper and
lower surfaces of the first layer. Meanwhile, the adhesive in Model II
adopts the CZMs, which contains only three components (Ss3, S13 and
Sz3) in 3D problems. Therefore, when the capacity of bearing inter-
laminar stresses (Ss3, S13 and S»3) catastrophically deteriorates in most
overlap areas of the first layer, stresses of the upper plate cannot be
transferred to the lower plate through the shearing action between the
cohesive adhesive layer and the plates. As a result, Model II loses the
carrying capacity and gets the mispredicted damage propagation.

& 1/E;  —va/E;, —v31/E; o
11
e || —v/Er  1/E; —v3/Es o
&3|| —vis/Ex —vi/E; 1/E; 033
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4.5. Stress distribution of the adhesive

To study the stress distribution of the adhesive, Model I with the
10.0 mm overlap length is chosen in this paper because of its compli-
cated failure mode and accurate numerical results. A path in the middle
of the adhesive layer along the tensile direction is picked and the stress
on the path is output. Based on the load-displacement curve, four re-
presentative loading points are selected to reflect the stress evolution
process of the adhesive. The loading points from 1 to 4 represent the
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process from the initial loading to the ultimate failure. Since the shear
stress T3 is relatively small, only the normal stress 033 and the shear
stress 13 are analyzed. As a comparison, an implicit result is given by
the method used in Ref. [18]. Fig. 17 describes 033 and 113 of the ad-
hesive of explicit and implicit methods, respectively. It can be found
that the stress curves of Model I share same distribution with the cor-
responding curves given by the implicit method.

Fig. 17(a) and (b) show the curves of the normal stress 033. They are
symmetrically “W-shaped”. The value of the normal stress is low and
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negative in the middle area of the adhesive layer, but increases rapidly
near both ends of the overlap area and turns to be positive. Further-
more, the closer to the ends, the faster o33 grows. The reason is that
additional bending moments exist at both ends of the overlap area with
an effect of peeling off, and the effect decreases when the positions are
away from the ends. As the loading displacement increases, the addi-
tional bending moments enhance. Thus, the positive stress and the
absolute value of the negative stress increase in the loading process. The
groove of the normal stress curves becomes narrower. Fig. 17(c) and (d)
describe the shear stress t;3 , which is significantly greater than 033.
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However, it cannot be concluded that t,3 is the dominant stress of the
adhesive failure, because the collapsing strength of each damage form
is different. Due to the additional bending moments, the stress value of
713 is also higher at both ends of the overlap area. As the loading dis-
placement increases, the peak stress moves toward the middle region
and the distribution of shear stress changes from “U-shaped” curves to
“M-shaped” curves.

5. Conclusions

Three parameterized 3D explicit finite element models are devel-
oped to investigate different tensile failure modes of adhesive-bonded
composite single-lap joints of different overlap lengths. User sub-
routines based on various failure criteria and element deletion techni-
ques are widely used. Compared with the experimental results, the
accuracy, efficiency and applicability of these models are comprehen-
sively discussed in terms of load-displacement curves and failure mor-
phology. The effect of cohesive elements on delamination and the stress
distribution of the adhesive are analyzed in the end. The following
conclusions are drawn:

(1) The tensile failure behavior is closely related to overlap lengths. As
the overlap length increases, the failure load and the longitudinal
failure displacement rise, and failure modes gradually change from
adhesive failure to delamination of laminates. Delamination always
occurs with the fiber pull-out.
High efficiency and acceptable accuracy of 3D explicit models are
demonstrated. All numerical load-displacement curves can reflect
the actual situation of the test curves without convergence pro-
blems. Prediction of failure morphology depends on model types.
All models can be considered only when adhesive failure occurs.
Once delamination occurs in laminates, Model I and Model III
perform better. Model I is more accurate in terms of prediction of
matrix damage and fiber damage, but is more computationally ex-
pensive than the other two models. Thus, Model III is a prior option
when high precision is not required. In the case of requirement for
high accuracy, Model I should be adopted.

(3) Using cohesive interface elements significantly affects the dis-
tribution of interlaminar stress of laminates and plays a positive
role in prediction of delamination. But when 3D solid elements and
anticlimactic damage evolution laws are applied in laminates, using
cohesive elements to predict damage propagation of adhesive layer
can result in mistakes.

(4) The stress curves of the adhesive in Model I are consistent with the
corresponding curves given by the implicit method. The maximum
normal stress (033) and shear stress (t13) both occur on the overlap
ends, while the minimum stresses occur in the middle region. The
stresses of the adhesive increase in the loading process and the ef-
fect of peeling off gradually extends toward the middle region of
overlap areas.

(2)
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Fig. 16. Stress contours and corresponding strain contours of the delamination area in Model 1II.
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Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the
online version, at http://dx.doi.org/10.1016/j.compstruct.2018.05.

134.
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